28 research outputs found

    Population Structure Analyses Provide Insight into the Source Populations Underlying Rural Isolated Communities in Illinois

    Get PDF
    We have previously hypothesized that relatively small and isolated rural communities may experience founder effects, defined as the genetic ramifications of small population sizes at the time of a community’s establishment. To explore this, we used an Illumina Infinium Omni2.5Exome-8 chip to collect data from 157 individuals from four Illinois communities, three rural and one urban. Genetic diversity estimates of 999,259 autosomal markers suggested that the reduction in heterozygosity due to shared ancestry was approximately 0, indicating a randomly mating population. An eigenanalysis, which is similar to a principal component analysis but ran on a genetic coancestry matrix, conducted in the SNPRelate R package revealed that the majority of these individuals formed one cluster with a few putative outliers obscuring population variation. An additional eigenanalysis on the same markers in a combined data set including the 2,504 individuals in the 1000 Genomes database found that most of the 157 Illinois individuals clustered into one group in close proximity to individuals of European descent. A final eigenanalysis of the Illinois individuals with the 503 individuals of European descent (within the 1000 Genomes Project) revealed two clusters of individuals and likely two source populations; one British and one consisting of multiple European subpopulations. We therefore demonstrate the feasibility of examining genetic relatedness across Illinois populations and assessing the number of source populations using publicly available databases. When assessed, it becomes possible for population structure information to contribute to the understanding of genetic history in rural populations

    Genetic structure of First Nation communities in the Pacific Northwest

    Get PDF
    This study presents genetic data for nine Native American populations from northern North America. Analyses of genetic variation focus on the Pacific Northwest (PNW). Using mitochondrial, Y chromosomal and autosomal DNA variants, we aim to more closely address the relationships of geography and language with present genetic diversity among the regional PNW Native American populations. Patterns of genetic diversity exhibited by the three genetic systems were consistent with our hypotheses, in that we expected genetic variation to be more strongly explained by geographic proximity than linguistic structure. Our findings were corroborated through a variety on analytic approaches, with the unrooted trees for the three genetic systems consistently separating inland from coastal PNW populations. Furthermore, the AMOVA tests support the trends exhibited by the unrooted trees, with geographic partitioning of PNW populations (FCT = 19.43%, p = 0.010 ± 0.009) accounting for over twice as much of the observed genetic variation compared with linguistic partitioning of the same populations (FCT = 9.15%, p = 0.193 ± 0.013). These findings demonstrate a consensus with previous PNW population studies examining the relationships of genome-wide variation, mitochondrial haplogroup frequencies, and skeletal morphology with geography and language

    Ancient and modern genomics of the Ohlone Indigenous population of California

    Get PDF
    Traditional knowledge, along with archaeological and linguistic evidence, documents that California supports cultural and linguistically diverse Indigenous populations. Studies that have included ancient genomes in this region, however, have focused primarily on broad-scale migration history of the North American continent, with relatively little attention to local population dynamics. Here, in a partnership involving researchers and the Muwekma Ohlone tribe, we analyze genomic data from ancient and present-day individuals from the San Francisco Bay Area in California: 12 ancient individuals dated to 1905 to 1826 and 601 to 184 calibrated years before the present (cal BP) from two archaeological sites and eight present-day members of the Muwekma Ohlone tribe, whose ancestral lands include these two sites. We find that when compared to other ancient and modern individuals throughout the Americas, the 12 ancient individuals from the San Francisco Bay Area cluster with ancient individuals from Southern California. At a finer scale of analysis, we find that the 12 ancient individuals from the San Francisco Bay Area have distinct ancestry from the other groups and that this ancestry has a component of continuity over time with the eight present-day Muwekma Ohlone individuals. These results add to our understanding of Indigenous population history in the San Francisco Bay Area, in California, and in western North America more broadly

    From cheek swabs to consensus sequences : an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    Get PDF
    Background: Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results: Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions: All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources

    Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus

    Get PDF
    Aligning sequences for phylogenetic analysis (multiple sequence alignment; MSA) is an important, but increasingly computationally expensive step with the recent surge in DNA sequence data. Much of this sequence data is publicly available, but can be extremely fragmentary (i.e., a combination of full genomes and genomic fragments), which can compound the computational issues related to MSA. Traditionally, alignments are produced with automated algorithms and then checked and/or corrected “by eye” prior to phylogenetic inference. However, this manual curation is inefficient at the data scales required of modern phylogenetics and results in alignments that are not reproducible. Recently, methods have been developed for fully automating alignments of large data sets, but it is unclear if these methods produce alignments that result in compatible phylogenies when compared to more traditional alignment approaches that combined automated and manual methods. Here we use approximately 33,000 publicly available sequences from the hepatitis B virus (HBV), a globally distributed and rapidly evolving virus, to compare different alignment approaches. Using one data set comprised exclusively of whole genomes and a second that also included sequence fragments, we compared three MSA methods: (1) a purely automated approach using traditional software, (2) an automated approach including by eye manual editing, and (3) more recent fully automated approaches. To understand how these methods affect phylogenetic results, we compared resulting tree topologies based on these different alignment methods using multiple metrics. We further determined if the monophyly of existing HBV genotypes was supported in phylogenies estimated from each alignment type and under different statistical support thresholds. Traditional and fully automated alignments produced similar HBV phylogenies. Although there was variability between branch support thresholds, allowing lower support thresholds tended to result in more differences among trees. Therefore, differences between the trees could be best explained by phylogenetic uncertainty unrelated to the MSA method used. Nevertheless, automated alignment approaches did not require human intervention and were therefore considerably less time-intensive than traditional approaches. Because of this, we conclude that fully automated algorithms for MSA are fully compatible with older methods even in extremely difficult to align data sets. Additionally, we found that most HBV diagnostic genotypes did not correspond to evolutionarily-sound groups, regardless of alignment type and support threshold. This suggests there may be errors in genotype classification in the database or that HBV genotypes may need a revision

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Neolithic Mitochondrial Haplogroup H Genomes and the Genetic Origins of Europeans

    Get PDF
    Haplogroup H dominates present-day Western European mitochondrial DNA variability (\u3e40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria

    Using ancient DNA to infer impacts of European colonization on first nations populations in coastal British Columbia, Canada

    No full text
    More than 270 individuals from about the last 6000 years have been unearthed from the Prince Rupert Harbour (PRH) archaeological sites in British Columbia (BC), Canada. Their descendants, the Coast Tsimshian, still reside in BC and partnered with the Malhi lab to explore their population history and the genetic effects of colonization on BC First Nations populations. In this dissertation, I sequenced the hypervariable segment (HVS1) of mitochondrial DNA (mtDNA) of 61 ancient PRH individuals and compared them to the descendant groups, the Lax Kw’alaams First Nation and Metlakatla First Nation. For context, I also compared the PRH individuals to the Nisga’a First Nation, the Stswecem’c Xgat’tem First Nation, and the Splatsin First Nation. There were haplotypes shared between these ancient and present-day individuals, and with the exception of the Metlakatla, genetic diversity in the present-day populations was less than that of the ancient population. This suggests a detrimental effect of European colonization, which would be expected given several factors including the spread of diseases by Europeans, forced migrations, and the stress of colonization. Additionally, the PRH population is not only related to these present-day coastal BC First Nations groups, but also to Alaskan Haida and Tlingit Indigenous groups as well. The Y-chromosome population history was also explored using high-resolution Y-STR data sets and SNPs. No STR haplotypes were shared between any present-day and ancient population, and the majority of present-day Y-chromosome haplogroups belong to those commonly found today in European populations. Since the mtDNA of present-day individuals exhibited a very low frequency of haplogroups commonly found in Europe, this indicates a sex-biased effect of colonization where the majority of the Indigenous Y-chromosome variation appears to have been replaced with European Y-chromosome variation. Since the whole mitochondrial genome (mitogenome) provides more information than the HVS1, I sequenced the mitogenome of 103 ancient and present-day BC individuals. Some of the HVS1 haplotypes that appeared to be the same, were no longer the same when mitogenome haplotypes were generated. There are three mitogenome haplotypes that are shared between at least one ancient individual and a member of a present-day First Nation population, further demonstrating genetic continuity of the BC populations. Since this is one of the largest ancient populations that has been studied and has present-day descendants, these BC populations are ideal for examining genetic continuity during European colonization. This could provide insight into other populations in the Americas as some of these ancient mitogenomes could represent founding lineages to this part of BC.LimitedAuthor requested closed access (OA after 2yrs) in Vireo ETD syste

    Genomic evidence for adaptation to tuberculosis in the Andes before European contact

    No full text
    : Most studies focusing on human high-altitude adaptation in the Andean highlands have thus far been focused on Peruvian populations. We present high-coverage whole genomes from Indigenous people living in the Ecuadorian highlands and perform multi-method scans to detect positive natural selection. We identified regions of the genome that show signals of strong selection to both cardiovascular and hypoxia pathways, which are distinct from those uncovered in Peruvian populations. However, the strongest signals of selection were related to regions of the genome that are involved in immune function related to tuberculosis. Given our estimated timing of this selection event, the Indigenous people of Ecuador may have adapted to Mycobacterium tuberculosis thousands of years before the arrival of Europeans. Furthermore, we detect a population collapse that coincides with the arrival of Europeans, which is more severe than other regions of the Andes, suggesting differing effects of contact across high-altitude populations

    Genome_trees.zip

    No full text
    Tree files estimated from sequence alignments of hepatitis B virus genomes. Trees are best maximum likelihood (ML) trees with bootstrap support values. Includes trees based on MUSCLE, manual, and PASTA genome alignments
    corecore